COMMENTS ON A COMBINATORIAL VERSION OF THE SECTION CONJECTURE AND THE MAIN THEOREM OF POP-STIX

Shinichi Mochizuki

Updated March 3, 2011

In the "Comments on the Main Theorem of Pop-Stix" dated November 15, 2010 (i.e., [PSCom]), we discussed a remark of Y. André to the effect that this theorem of Pop-Stix allows one to reduce the *Profinite p-adic Section Conjecture* to its *tempered* counterpart. In the present note, we observe that this *reduction* may also be obtained as a consequence of an entirely *elementary* observation concerning *actions of finite groups on a finite graph*, hence, in particular, without resorting to the use of *highly nontrivial arithmetic* results such as Tamagawa's "*resolution of nonsingularities*" [i.e., the main result of [Tama]].

(1) Let Σ be a nonempty set of prime numbers, G a finite cyclic group of order a power of a prime $\in \Sigma$, Γ a finite graph equipped with an action by G. Suppose, for simplicity, that the action of G on Γ does not switch the branches of any edge of Γ . Observe that one may form a quotient graph

Γ/G

whose *vertices* are precisely the *G*-orbits of vertices of Γ , and whose *edges* are precisely the *G*-orbits of edges of Γ ; moreover, one has a natural morphism $\Gamma \to \Gamma/G$. On the other hand, one may also form a "quotient orbigraph"

 $\Gamma//G$

— i.e., a quotient of Γ by G "in the sense of stacks". In the present discussion, we shall only be interested in the pro- Σ fundamental group [relative to a suitable basepoint]

$$\pi_1^{\Sigma}(\Gamma//G)$$

of $\Gamma//G$. To define this profinite group, it suffices to describe the connected finite étale Galois coverings of $\Gamma//G$. [That is to say, then arbitrary finite étale coverings of $\Gamma//G$ may be described as coproducts of subcoverings of such connected finite étale Galois coverings.] A connected finite étale Galois covering of $\Gamma//G$ consists of a connected finite étale Galois covering $\Gamma^* \to \Gamma$ equipped with the action of a finite group G^* and an augmentation [i.e., a surjective homomorphism] $\epsilon^* : G^* \twoheadrightarrow G$ such that the action of $N^* \stackrel{\text{def}}{=} \operatorname{Ker}(\epsilon^*)$ on Γ^* induces an isomorphism $N^* \stackrel{\sim}{\to} \operatorname{Gal}(\Gamma^*/\Gamma)$, and the induced action of $G^*/N^* \stackrel{\sim}{\to} G$ on Γ is compatible with the original action of G on Γ . Thus, we have a *natural exact sequence*

$$1 \ \rightarrow \ \pi_1^{\Sigma}(\Gamma) \ \rightarrow \ \pi_1^{\Sigma}(\Gamma//G) \ \rightarrow \ G \ \rightarrow \ 1$$

of profinite groups. Now let us observe the following elementary graph-theoretic assertion — which may be thought of as a sort of "Combinatorial Section Conjecture":

(*_{CSC}) Suppose that the natural surjection $\Pi_G \stackrel{\text{def}}{=} \pi_1^{\Sigma}(\Gamma//G) \twoheadrightarrow G$ admits a section $\sigma: G \to \Pi_G$. Then there exists a vertex v of Γ that is fixed by G.

Indeed, we may assume without loss of generality that the action of G on Γ is *faithful*. Let us first consider the case where the order of G is *prime*. In this case, if (*_{CSC}) is *false*, then it follows that the action of G on Γ is *free*, hence that the natural morphism $\Gamma \to \Gamma/G$ is a *finite étale covering*, so $\Gamma//G$ may be *identified* with Γ/G ; but since Γ/G is itself a graph, it follows that $\pi_1^{\Sigma}(\Gamma/G) \xrightarrow{\sim} \pi_1^{\Sigma}(\Gamma//G)$ is a *free pro-* Σ group, hence torsion-free, in contradiction to the existence of the section σ . Next, we consider the case of G of arbitrary non-prime order. Let $H \subseteq G$ be the unique subgroup such that $Q \stackrel{\text{def}}{=} G/H$ is of prime order. Write $\Gamma_Q \stackrel{\text{def}}{=} \Gamma/H$. Then we have a diagram of graphs and group actions

$$\begin{array}{ccc} G \curvearrowright & Q \curvearrowright \\ \Gamma & \longrightarrow & \Gamma_Q \end{array}$$

which induces an outer homomorphism $\Pi_G \to \Pi_Q \stackrel{\text{def}}{=} \pi_1^{\Sigma}(\Gamma_Q//Q)$, whose kernel we denote by N. The restriction of this outer homomorphism to $\sigma(H) \subseteq \Pi_G$ determines an outer homomorphism $\sigma(H) \to \pi_1^{\Sigma}(\Gamma_Q)$. Since $\pi_1^{\Sigma}(\Gamma_Q)$ is a free pro- Σ group, hence torsion-free, we thus conclude that this homomorphism $\sigma(H) \to \pi_1^{\Sigma}(\Gamma_Q)$ is trivial, hence that σ determines a section $\sigma_Q : Q \to \Pi_Q$ of the natural surjection $\Pi_Q \twoheadrightarrow Q$. In particular, by applying $(*_{\text{CSC}})$ in the case of Q [which has already been verified], we thus conclude that there exists a vertex v_Q of Γ_Q that is fixed by the action of Q. Let v be a vertex of Γ that lifts $v_Q, g \in G$ a generator of G. Then since Q fixes v_Q , it follows that $v^g = v^h$, for some $h \in H$, hence that v is fixed by $g \cdot h^{-1} \in G$. On the other hand, since $g \cdot h^{-1}$ generates G, we thus conclude that v is fixed by G. This completes the proof of $(*_{\text{CSC}})$.

(2) Let Σ be a nonempty set of primes, $l \in \Sigma$, k a perfect field of characteristic $\neq l, \bar{k}$ an algebraic closure of k, $G_k \stackrel{\text{def}}{=} \operatorname{Gal}(\bar{k}/k)$. Then we shall say that k is *l*-cyclotomically full if the image of the *l*-adic cyclotomic character $G_k \to \mathbb{Z}_l^{\times}$ is open in \mathbb{Z}_l^{\times} . Write T^{\log} for the log scheme obtained by equipping $T \stackrel{\text{def}}{=} \operatorname{Spec}(k)$ with the log structure determined by the chart $\mathbb{N} \ni 1 \mapsto 0$. Let $Z^{\log} \to T^{\log}$ be a stable log curve [cf., e.g., [NodNon], §0], X^{\log} a connected covering of Z^{\log} that arises from the logarithmic fundamental group of Z^{\log} , and $S^{\log} \to T^{\log}$ the resulting covering of T^{\log} . Here, we assume further, to simplify notation, that the underlying morphism of schemes $S \to T$ is an isomorphism. Write $\Pi_{X/k}$, $\Pi_{S/k}$ for the respective maximal

pro-l quotients of the logarithmic fundamental groups $\pi_1(X^{\log} \times_k \overline{k}), \pi_1(S^{\log} \times_k \overline{k})$ [relative to suitable basepoints]. Write Π_X , Π_S for the respective quotients of the logarithmic fundamental groups $\pi_1(X^{\log}), \pi_1(S^{\log})$ [relative to suitable basepoints] of the natural surjections $\pi_1(X^{\log} \times_k \overline{k}) \twoheadrightarrow \Pi_{X/k}, \pi_1(S^{\log} \times_k \overline{k}) \twoheadrightarrow \Pi_{S/k}$. Thus, we have natural exact sequences of profinite groups

$$1 \to \Pi_{S/k} \to \Pi_S \to G_k \to 1; \quad 1 \to \Pi_{X/k} \to \Pi_X \to G_k \to 1$$

$$1 \rightarrow \Delta_{X/S} \rightarrow \Pi_{X/k} \rightarrow \Pi_{S/k} \rightarrow 1; \quad 1 \rightarrow \Delta_{X/S} \rightarrow \Pi_X \rightarrow \Pi_S \rightarrow 1$$

— where $\Delta_{X/S}$ is defined so as to render the final two sequences exact. Write Γ_X for the dual graph of $X^{\log} \times_k \overline{k}$. Suppose, for simplicity, that the natural action of $\pi(S^{\log})$ on Γ_X factors through the quotient $\pi(S^{\log}) \twoheadrightarrow \Pi_S$ and, moreover, does not switch the branches of any edge of Γ_X . Write $\widetilde{\Gamma}_X$ for the pro-graph determined by the profinite universal covering $\widetilde{X} \to X$ of X corresponding to Π_X . Then let us observe the following consequence — which may be thought of as a sort of "Log-scheme-theoretic Section Conjecture" — of the purely combinatorial result of (1):

(*_{LSC}) Suppose that k is *l*-cyclotomically full, and that the natural surjection $\Pi_X \twoheadrightarrow \Pi_S$ admits a section $\sigma : \Pi_S \to \Pi_X$. Then there exists a vertex \tilde{v} of $\tilde{\Gamma}_X$ such that, if we write $D_{\tilde{v}} \subseteq \Pi_X$ for the decomposition group associated to \tilde{v} , then $\sigma(\Pi_S) \subseteq D_{\tilde{v}}$. Finally, the collection of possibilities for \tilde{v} determines "star" in $\tilde{\Gamma}_X$, i.e., a [connected] tree in $\tilde{\Gamma}_X$ that admits a vertex \tilde{v}_* such that every vertex that of the tree is connected to \tilde{v}_* by a path of length ≤ 1 .

Indeed, write Δ_{Γ} for the maximal pro-l quotient of $\pi_1^{\Sigma}(\Gamma_X)$, where we take $\Sigma \stackrel{\text{def}}{=} \{l\}$. By replacing X^{\log} by an appropriate covering arising from Π_X , one verifies immediately that one may assume without loss of generality that Δ_{Γ} is nonabelian. The natural action of Π_S on Γ_X factors through a finite quotient $\Pi_S \to Q_S$. Thus, one obtains a natural outer action of Q_S on Δ_{Γ} , hence a profinite group Π_{Γ} that fits into a commutative diagram of profinite groups

in which the vertical arrows are surjections. Write $\Pi_{S/k} \to Q_{S/k}$, $G_k \to Q_k$ for the *natural surjections* determined by the natural surjection $\Pi_S \to Q_S$. Thus, these natural surjections determine an *exact sequence of quotients* $1 \to Q_{S/k} \to Q_S \to Q_k \to 1$, as well as a corresponding *exact sequence of kernels* $1 \to N_{S/k} \to N_S \to N_k \to 1$, hence, in particular, a commutative diagram of profinite groups

— where we observe that $N_{S/k}$ is an open subgroup of $\Pi_{S/k}$, hence noncanonically isomorphic to \mathbb{Z}_l . Thus, if we set $\Pi_{\Gamma/k} \stackrel{\text{def}}{=} \Pi_{\Gamma} \times_{Q_S} Q_{S/k}$, then we obtain an exact sequence

$$1 \rightarrow \Delta_{\Gamma} \rightarrow \Pi_{\Gamma/k} \rightarrow Q_{S/k} \rightarrow 1$$

as well as compatible natural surjections $\Pi_{X/k} \twoheadrightarrow \Pi_{\Gamma/k}, \Pi_X \twoheadrightarrow \Pi_{\Gamma}$. Next, let us consider the homomorphisms

$$N_{S/k} \rightarrow \Delta_{\Gamma} (\subseteq \Pi_{\Gamma/k}); \quad N_S \rightarrow \Pi_{\Gamma}$$

obtained by composing these natural surjections with the restriction of σ to $N_{S/k} \subseteq$ $N_S \subseteq \Pi_{S/k} \subseteq \Pi_S$. Thus, any section $\tau : N_k \to N_S$ of the natural surjection $N_S \rightarrow N_k$ determines compatible actions of N_k on $N_{S/k}$ and Δ_{Γ} . Now let us observe that $N_k \subseteq G_k$ acts on $N_{S/k}$ via the *l*-adic cyclotomic character, while the action of N_k on Δ_{Γ} is *trivial*. Thus, it follows immediately from our assumption that k is *l*-cyclotomically full that the above homomorphism $N_{S/k} \to \Delta_{\Gamma}$ is triv*ial.* In particular, the homomorphism $\Pi_{S/k} \to \Pi_{\Gamma/k}$ determined by composing the restriction of σ to $\Pi_{S/k} \subseteq \Pi_S$ with the natural surjection $\Pi_{X/k} \twoheadrightarrow \Pi_{\Gamma/k}$ factors through the quotient $\Pi_{S/k} \twoheadrightarrow Q_{S/k}$, hence determines a section $Q_{S/k} \to \Pi_{\Gamma/k}$ of the natural surjection $\Pi_{\Gamma/k} \twoheadrightarrow Q_{S/k}$. Thus, by applying the observation (*_{CSC}) of (1) above, we conclude that the natural action of $\prod_{S/k}$ [i.e., of $Q_{S/k}$] on Γ_X fixes some vertex of Γ_X . By applying this *conclusion* [obtained in the case of Π_X] to the various open subgroups of Π_X , we thus obtain that there exists a vertex \tilde{v} of Γ_X such that, if we write $D_{\tilde{v}} \subseteq \Pi_X$ for the *decomposition group* associated to \tilde{v} , then $\sigma(\Pi_{S/k}) \subseteq D_{\tilde{v}}$. Moreover, by [NodNon], Proposition 3.9, (i), it follows immediately that the collection of possibilities for \tilde{v} determines a [connected] tree in Γ_X such that any two vertices of the tree are connected by a path of length ≤ 2 . One verifies immediately that such a tree is necessarily a "star". Since, by assumption, the action of $\sigma(\Pi_S)$ on Γ_X does not switch the branches of any edge of Γ_X , it follows immediately that this star admits at least one vertex fixed by the action of $\sigma(\Pi_S)$. In particular, one may choose \tilde{v} such that $\sigma(\Pi_S) \subseteq D_{\tilde{v}}$. This completes the proof of $(*_{LSC})$.

(3) It is not difficult to verify that the observation $(*_{LSC})$ of (2) generalizes immediately, for Σ an arbitrary nonempty set of primes [i.e., not necessarily of cardinality one], to the case of the geometrically pro- Σ fundamental groups associated to arbitrary nodally nondegenerate outer representations, i.e., that do not necessarily arise from a stable log curve over a log point as in (2) [cf. the theory of [NodNon]]. We leave the routine details to the reader.

(4) Now let us consider the situation discussed in [PSCom], (7). That is to say, let k be an arbitrary complete discrete valuation field of mixed characteristic whose residue characteristic we denote by p, \bar{k} an algebraic closure of $k, G_k \stackrel{\text{def}}{=} \text{Gal}(\bar{k}/k),$ Σ a set of primes that contains a prime $l \neq p, X$ a proper hyperbolic curve over k. Write

$$\Pi_X \twoheadrightarrow \Pi_X^{(\Sigma)}$$

for the geometrically pro- Σ quotient of Π_X and

$$\Pi_X^{\mathrm{tp},(\Sigma)} \subseteq \Pi_X^{(\Sigma)}$$

for the " Σ -tempered fundamental group", i.e., the image of the tempered fundamental group Π_X^{tp} of X in $\Pi_X^{(\Sigma)}$. Thus, we have natural surjections $\Pi_X^{(\Sigma)} \twoheadrightarrow G_k$, $\Pi_X^{\text{tp},(\Sigma)} \twoheadrightarrow G_k$. Then the discussion of (2) has the following immediate consequence:

 $(*_{PTS})$ The natural map

 $\operatorname{Sect}(\Pi_X^{\operatorname{tp},(\Sigma)}/G_k) \to \operatorname{Sect}(\Pi_X^{(\Sigma)}/G_k)$

— i.e., from $\Pi_X^{\mathrm{tp},(\Sigma)}$ -conjugacy classes of sections of $\Pi_X^{\mathrm{tp},(\Sigma)} \to G_k$ to $\Pi_X^{(\Sigma)}$ conjugacy classes of sections of $\Pi_X^{(\Sigma)} \to G_k$ — is *injective*. If, moreover, kis *l*-cyclotomically full for some $l \in \Sigma$ that is $\neq p$, then this natural map
is *bijective*.

Indeed, the proof of the asserted *injectivity* is discussed in [PSCom], (7). On the other hand, the asserted *surjectivity* is an immediate consequence of $(*_{LSC})$ [i.e., applied to the special fibers of stable models of finite étale coverings of X].

(5) Thus, in the situation of (4) [cf. also the discussion of [PSCom], (2)], if one is given a cofinal system of finite étale connected Galois coverings of X with stable reduction

$$\ldots \rightarrow X_{i+1} \rightarrow X_i \rightarrow \ldots$$

[where *i* ranges over the positive integers] and a section $s : G_k \to \Pi_X^{(\Sigma)}$ of $\Pi_X^{(\Sigma)} \twoheadrightarrow G_k$, then, by applying (*_{LSC}) to the special fibers of stable models of the X_i , one concludes that [after possibly passing to a cofinal subsystem] there exists either a [not necessarily unique] system of vertices

 $\ldots \rightsquigarrow v_{i+1} \rightsquigarrow v_i \rightsquigarrow \ldots$

or a [not necessarily unique] system of edges

 $\ldots \rightsquigarrow e_{i+1} \rightsquigarrow e_i \rightsquigarrow \ldots$

of X — i.e., each v_i (respectively, e_i) is an irreducible component (respectively, node) of the special fiber of the stable model of X_i that is *fixed* by the natural action of the image Im(s) of the section s; the image of the irreducible component v_{i+1} (respectively, node e_{i+1}) in X_i is contained in the irreducible component v_i (respectively, node e_i). The central issue discussed in [PSCom] is precisely the issue of

(Q1) whether or not the main theorem of Pop-Stix yields any essentially new information concerning the above situation — i.e., information that cannot already be derived from the above systems of vertices or edges.

Since

(i) it appears that aside from various valuation-theoretic techniques, the main technically nontrivial input into the proof of the main theorem of Pop-Stix is Tamagawa's resolution of nonsingularities, and, moreover,

SHINICHI MOCHIZUKI

 (ii) it is difficult to see how Tamagawa's resolution of nonsingularities can lead to any essentially stronger information than the existence of a system of vertices or edges as discussed above,

it seems reasonable to suspect that

(Q2) it should be possible to *derive* the main theorem of Pop-Stix directly from the *existence of a system of vertices or edges* as discussed above, together with various purely *valuation-theoretic techniques*.

On the other hand, since I am not familiar with these valuation-theoretic techniques, it is not clear to me how to obtain a proof of the main theorem of Pop-Stix as in (Q2).

Bibliography

- [Semi] S. Mochizuki, Semi-graphs of Anabelioids, Publ. Res. Inst. Math. Sci. 42 (2006), pp. 221-322.
- [CmbGC] S. Mochizuki, A combinatorial version of the Grothendieck conjecture, Tohoku Math. J. 59 (2007), pp. 455-479.
- [NodNon] Y. Hoshi, S. Mochizuki, On the Combinatorial Anabelian Geometry of Nodally Nondegenerate Outer Representations, to appear in *Hiroshima Math. J.*
- [AbsTopII] S. Mochizuki, *Topics in Absolute Anabelian Geometry II: Decomposition Groups*, RIMS Preprint **1625** (March 2008).
 - [PSCom] S. Mochizuki, *Comments on the Main Theorem of Pop-Stix*, manuscript dated November 15, 2010.
 - [PS] F. Pop and J. Stix, Arithmetic in the fundamental group of a p-adic curve On the p-adic section conjecture for curves, preprint, Philadelphia-Heidelberg-Cambridge, August 2010.
 - [Tama] A. Tamagawa, Resolution of nonsingularities of families of curves, Publ. Res. Inst. Math. Sci. 40 (2004), pp. 1291-1336.

6